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Thin shells of revolution, closed in the circumferential direction, and with an 

arbitrary meridian shape, are considered. The density of the vibration frequen- 

cies is determined by using an asymptotic method of integration [l - 31. The 

density of the frequencies in the neighborhoods of condensation points is invest- 
igated. The question of the density of vibration frequencies of thin shells has 

been examined in [4 - 71. Shallow shells of rectangular planform were examined 

in t4, 51. 

1. Initial equrtlonr rnd their integrrla. After insertion of inertial 
terms and separation of variables the system of three shell equilibrium equations in dis- 

placements [8] becomes 

L,,n -i- L,,z; + L,,W -k hlL = 0 

(1.1) 

Here u, U, w are the projections of the displacements in the direction of the generator, 

the parallel, and the normal. The linear differential operators L,j, Naa depend on the 
variable coefficients of the quadratic forms of the middle surface and on the number m 

of waves along a parallel, E is Young’s modulus, o Poisson’s ratio, y the density and 
w the vibration frequency. 

Let us select the characteristic dimension of the middle surface as the unit of length. 

Then the shell thickness 11 will be a small number. Let us introduce the small parameter 

p by means of the formula l_t4 = Ir” / 12 
Vibration modes with M >I introduce the main contribution to the magnitude of 

the density. Let us set m = p-‘p, then all eight integrals of the system (1.1) have a 
large index of variability (equal to ‘/2) and can be represented as 
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where glr are the roots of the characteristic equation, s is the arclength of a generator, 
B (8) the distance to the axis of rotation, R, (s), Rs (s) the principal radii of curva- 

ture (R, is the radius of curvature of the meridian). Let us consider K, > 0, and let 

us impose no constraint on the sign of RX . The other unknown quantities (the displace- 

ments u, U, the stress resultants T,, 2’s, 8, N,, N,, the mornen~~~, kfs, mare also 

represented in series of the form (1.2). 
The solutions (1.2) are applicable in the neighborhoods of those points s in which the 

roots of (1.3) are pairwise distinct. The points S = S* at which qk (8) = Q(S) are 

called turning points. The solutions (1.2) are unsuitable in the neighborhoods of these 

points because cak (s*) = 00. Solutions of the system (1.1) in the neighborhoods of turn- 
ing points have been constructed in p2, 31 and formulas have been found connecting sol- 

utions of the form (1.2) which have passed through a turning point, The results in r2. 33 
are used below. 

2, On the dsnaity of ftsquenclsr for fixed WL. Let us consider a shell 
bounded by the parallels s = s1 and s = s2, on which four homogeneous boundary cond- 

itions have been given (in the case of a dome we demand boundedness of the solutions at 
the vertex). The eighth order determinant obtained by substituting a linear combination 
of solutions in the boundary conditions set equal to zero will be the frequency equation. 

Equation (1.3) can have a different number of pure imaginary roots depending on the pa- 
rameters m, s, u . Setting aside the case of multiple roots, we obtain three cases, pro- 
visionally denoted by Ai (i = 0, 1, 2), where i is the number of pairs of imaginary 
roots. The case A, holds for 

h>h,= _?z$ _t_ L$ (2.4) 

and the cases A, or A, for h < Aa.If 

m4h’ 

->q$y&&) 12B” 
(2.2) 

then the case A, holds for all h < h,. Orherwise for h, < h < h, case AZ holds, 
and for h < h, case A,. Here 

A, = min ‘* “Bt I)’ + $I& 
X&O { ( -&i-k)) (2.3 j 

Let m > 1 be fixed. It has been shown in [l- 31 that if the case & or the case Al 
holds for all S,then the frequency equation is 

tg{j p-1141 (s, tJ@s + (fW}= Y(4 (2.4) 

Dl 

where q1 is the pure imaginary root, D1 (m, 0) is the part of the segment (SI, S2) on 
which it exists. In connection with the fact that the functions cp (0) and Y( (0) vary 

slowly. the density n (m, w) of the roots of Eq. (2.4) is 

Formula (2.5) has been derived for rigidly fixed edges, however it also holds for other 
boundary conditions. Only the functions cp and Y depend on their form. 

If (1.3) has two pairs of pure imaginary roots i_ 41 and & qa (let 1 qIj > k&11), 



then for arbitrary boundary conditions the density n (m, co) cannot be found successfully. 
In the case of the Navier boundary conditions (T, = 12 - ?r = k?, =-= 0 for s :: s1 

s = ss) the frequency equation decomposes into two equations 

sill 
1s 

(Ii = 1, ‘) (2.6) 

Uk 

p-1 1 qt (s, 0) 1 ds/ f 0 (p) = 0 

where, as before, D I; is the domain of existence of the imaginary root qf!. It follows 
from (2.6) that 

n(m,o)--&j\/G/ds+ s ig/ds) (23) 
li, u2 

Formulas (2.7) also holds for rigidly fixed shell edges (U = u = w = w’ = 0) if 
m = 0 (p-%).Indeed if 

R,& < 0, h < (1 - 3) min, (R,+, A,-‘} 

the frequency equation reduces to [l] 

Formula (2.7) holds because 

a1 > 4 + a29 -& I 41 I < (-4 & I h I > 0 

Let us examine the case of small m = O(1) (including m = 0). The boundary con- 
ditions are arbitrary. Let us set 

b(s, w) = 31. - (1 - 3) /i2+, h- = min, { Gi, h+ = ma-$ 

Then for h > ht the density is [l] 

(2.9) 

and upon compliance with the conditions h- <h < hf, Rs’ (s) -$= 0 (~1 < S < Sa) 
the density is determined by (2.9) in which the integration must be carried out over the 

part of the interval (sr, Ss) wherein b > 0. It follows from (2.9) that for h > h- the 
density increases as the thickness h diminishes. Tine number of frequencies is practically 
independent of h. for h < h- - 8, hence we consider that ?t (m, w) z 0 for i < A- 

3. Frequency dsnrity in the general cata. The density n (co) is 

n (co) =-= n (0, 0) + 2 2 n (m, 0) (3.1) 
m+o 

(the densities rz fm, O) are found in Sect. 2). The factor two in (3.1) appears because 
two vibration modes (ID (s) cos mcp and w (s) sin mcp, where cp is the longitudinal angle) 
correspond to each root of the frequency equation for m # 0 

Let us consider approximately that the density n (m, w) is determined by (2.7) for 
all m (we consider (2.5) as a particular case of (2.7)). Hence, an error will be committed 
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for the components with 7~ = 0 (1) , whose order will be estimated below. We obtain 

(3.2) 

let us introduce the notation 

q=iF, D = Eh3 
i2(1 - 5’) ’ 

$+k =i, 2), x = I&R,-’ 

(or < 0 for R, < 0). Then (1.3) can be rewritten as 

(1) (r, s, m, 0) = -4 zr (r2 + 1)4 - a2(r2 + 1)” + (02r2 + ctQ2 = 0 (3.4) 

In (3.2) we replace approximately the summation over m by integration 

(3.5) 

where rk (a, m, 0) are the positive roots of (3.4) (rl > r2). The liinits of integration 
define the domains (perhaps empty) of existence of these roots. Since dr2 / &I < 0, 
there is hence a minus in (3.5). Using the identity 

ar a@ a@ -1 ar 
ao=doan % ( ) 

(3.6) 

we reduce (3.5) to 

TZ (61) = $ \ B (yhD-l)‘s’x Re { 7 {d (r2 + 1)2 - (02r2 + 01)2]-1/~ w dr} ds (3.7) 
SI 0 

where Re (2) is the real part of the number z. From (3. ‘7) we obtain 

n (a) = f 7 B (yhD_')'I'% G (CO, S) ds 
St 

G= I $ Ii (W, s) F [ 12 (0, s)] for RI(S) # & (s) 

I (1 __ a,-“)-‘,‘z for NI (s) = I??(s) 

H = 0 for O<a,, a,<1 

(3.8) 

(3.9) 

Ii ~ Hl = 2 ca;‘ral) j”‘, k = k, = [@’ - I)@’ + I) 1”’ 
2(aa---1) _ 

for O<a,<l, a,>1 

H = H,, k - k, for 1 a, ( > 1, a2 < 1 or - 1 < Us < 0, a2 > 1 
(3.10) 

If z H,’ z 
am 1 ‘la 

(a1 + 1) (a2 - 1) 
, k = k,-l for 1 < a, < a2 

H-H,‘, k=k,-l for l<a,<a, or a,<-1, a,>1 

or - l<a,<O, a,<1 

Here F (k) is the complete elliptical integral of the first kind, a, =O /oi, ~2 = 



= 0 / 0s > 0. The quantities lis, Hz, Hs’are obtained from ii,, H,, H,’ by comm- 

utating the subscripts 1 and 2. Graphs ot the function 6’ are showp in Fig. 1 for shells of 

positive and negative Gaussian curvature. If the shell parameters B, R,, R, are indep- 

endent of S (almost cylindrical shells, for example), then results (3.8) -(3.10) differ 

from the results in [4, 51 only by notation. Presented there are also graphs corresponding 

to Fig. 1. Formula (3.8) can be integrated thus for an arbitrary shell of revolution. Let 

0 lo,1 w2 

Fig. 1. 

us divide the shell into small rectangles with 

constant parameters B, R , R,, let us find the 

frequency density for each of them by the for- 

mula in [4, 51, and let us then sum these den- 

sities. Such a method of calculating the density 

was proposed in [S] as a hypothesis. Cases when 

(3. 8) has a foundation are discussed below. 

Fc: (I) --+ 00 formula (3.8) goes over into 

the Courant rormula [S] for the density of the 

transverse vibration frequencies of a plate of area s 

(3.11) 

Indeed for o -+ 00 we have G -+ 1, and (3.11) is obtained if it is taken into account 

that the shell area is 

S = 2n 5 B ds (3.12) 
61 

Passage to the limit as o -+ 00 is provisional because the initial equations (1.1) are 

inapplicable at high frequencies. However, for sufficiently thin shells a range of frequ- 

encies exists in which the equations (1.1) are applicable, and the density n (0) is close 

to n, at the same time. 

Terms of the form (2.9) were discarded in going from (3.1) to (3.2). The order of the 

error admitted here is determined by the ratio between the densities (2.9) and (3.11) 

n(m, o)/n, =: 0 (p) = 0 [(h ! R)4 (3.13) 

where R is the characteristic dimension of the middle surface. 

It can be assumed that (3.8) holds to any degree of accuracy in all cases independently 

of the frequency o, the kind of boundary conditions, and the shape of the middle surface. 

However, (3.8) does not always have a foundation 

Formula (3.8) has been obtained from (2.7), which is proved for all m in the follow- 

ing cases: 

1) For any o and boundary conditions if 0 < x (s) < 1; 

2) For any boundary conditions and shells of any shape rf there is compliance with one 

of the inequalities 

0 <a_ = min, {or, OZ), 0 > o+ = max, {Fie (w? Jf2xz - x)j 

3) For any o and shells of any shape if the Navier boundary conditions hold. 

In cases (1) and (2) Eq. (1.3) has not more than one pair of pure imaginary roots for 

all s and (2.5) is used to calculate the density. In all the remaining cases (1.3) has 

two pairs of pure imaginary roots for some m, s and (2.7) has a foundation only for the 
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Navier boundary conditions. As in [lo], let us say that in these cases degeneration of 
the edge effect holds. This latter circumstance makes giving a foundation for the form- 

ula for the density difficult for o < o, for both shells of revolution and for shallow shells 
of rectangular planform [S]. If B, R,, R,are constants, the inequality o ( o+ differs 
from the inequality (8) in [6] only in notation. 

Let us discuss (3.8) from another viewpoint. It has been noted in [4, 51 that G (s, o) 
becomes infinite for o = max {ol, o,} in the case x > 0 and for w = - ol, o = o8 

in the case x < 0. For shells of revolution G (s, o) is obtained when evaluating the 

inner integral in (3.7). It is improper and diverges for the above-mentioned values of 
o either for r = 0 (in the case o = ) q 1 ), or for r = C-Z in the case w = os). From 

(3.3) we have P / p = imrB-‘. Therefore, for r = 0 the integral (1.2) is not an integral 

with a high index of variability, and the method of constructing the frequency equation 
becomes inaccurate near P = 0 . 

For r = 00 we have m = 0; it was assumed in deriving (3.8) that the members with 
m = 0 (p-l) introduce the main contribution, and this is not so in this case. 

Thus, the infinite discontinuities in G (s, o) are a consequence of imperfections in the 

method in both cases. When R, (s) and Rz (s) are not constants, the discontinuities vanish 

after integration in (3.8), and this formula should apparently yield satisfactory results. 

Cases when (3.8) yields infinite discontinuities and expressions more exact than (3.8) 
are obtained for the densities are examined below. Hence modes with nr = 0 @“I*) 
yield the main contribution in the neighborhoods of frequency concentration points. The 

contribution of the mode with m = 0 (1) is small because of (3.13). 

The case m = U (IL’*) (1 < t < 2) can be obtained from the case m = p-l p 
considered for p > 1 and corresponds to frequencies for which the density is close to 

the Courant density. 

4. Spherical rhell. For a spherical shell of radius R1 formula (3.8) yields 

n (0) 

i 

0, 0 < 01 = (E / T)“Z R,-l 

- = no [ 1 - (a1 / cq]-‘/a, 0 > 01 
(4.1) 

For a shallow shell of rectangular planform (4.1) has been obtained in [4, 51. A shell 
bounded by two parallels, in the shape of a dome or a closed shell, is examined below 

in the neignbornood of a condensation point of the frequency o = UJ~ . 
A formula has been obtained in [ll] to determine frequencies of the form (2.4) from 

which we find 
n(m, co) = +& 

S( 
D1 

p1 - -&)‘” d0 (4.2) 

where 0 is the angle of latitude on a sphere (0 < (I < rc), D, is the part of the interval 
t)i < 8 & 8, in which the radicand is nonnegative, and p1 is a positive root of the 
equation I%%a + (1 - o2 - h,) (p - 2 - h,) - (1 + (5) (2 + o)h, = 0 

(h, = hR12, p: = h2 / (12 R,2)) (4.3) 

As in Sect. 3, summing over m we find 

S 
n (0) = - dpl 

4nRi” dw ’ 
S = 2nR,2 (cos 0, - cos 0,) (4.4) 

The same formula can be obtained for a closed sphere also by a direct computation of 
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the number of solutions corresponding to frequencies less than o which are bounded at 

the poles. 

An approximate representation of PI(o) for o z aI and o > o1 is given by the 

parametric formulas [ll] 

where the parameter y varies between 0 < y < 00. Then (4.4) yields 

n (0) - = f(y) .= 
no $ +“:, 2 [(I -- 32) pp -+ (/J3 - c) y-$ (4.6) 

For o = a1 the coefficient of concentration f (y) is a maximum 

f, = max {f (y)} = (12K12 / h2)‘:c 2/3 (1 - S2)’ z C-l” (G.7) 

andforw-+oowehavey-+oo andf(u)--+l.i.e,, the Courant density is obtained 

in the limit. We have f, = 3.2 for R, / h = 100, 0 = 0.3,and the function f (y) 
is shown in Fig. 2 by the solid line (the dashes are (4.1)). 

5. Cylindrical rhell. The density has an infinite discontinuity of the form 

n (0) = 0 (1111 o - 0~1) [4, 51 for a cylindrical shell 

of radius H, at w =- 0, . The same result also follows 

from (3.8). The density in the neighborhood of 0) = 02 

has been investigated in more detail in [7], where it has 

been shown that the maximum coefficient of concentration 

is on the order of 

y1 (Q) / n, = 0 [In (R2 ! h)I (5.1) 

An “experimental” construction of the density n(o) for a 

cylindrical and spherical shell was carried out in [5]. The 

Fig. 2. 
results obtained are in qualitative agreement with (5.1) 

and (4.7). 

6. Toroidrl #hell. Let us consider the part of a torus formed by rotating the 

arc of a circle of radius - R, (R, < 0) around an axis and having negative Gaussian 

curvature. It follows from (3. 8) that the density is n (0) = 00 for o = - w1 . We 

obtain q1 (s) zz 0 from (2. 8) for o = - o1 which indicates the existence of integrals 

with a small index of variability in the system (1.1). Let us construct them. Ler 

R, < - R,, 1 ((m(( p-l, h = (1 - a2) I RI2 + h, I m’ (6.1) 

Then two solutions of the system (1.1) can be represented as power series in m-l 

11(s)=~(B~(i~+~)$)-2~~).~0(~) 

u(s) =&(&+&+I) ($), 7~I(s)+~.o(;-) 

where i (s) satisfies the equation 

Z/n -1 g (CT, 0) y = 0, g = mah2g, - m2 (A - (1 - 6”) K,-‘) g, - g, 

(6.2) 
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g, (4 = 

WR2 

24 (1 - a’) tla (R2 - RI) ’ g, (s) = 12B4g, (9 (6.3) 

gs (4 = 
3R12 f (3s - 1) RIRZ f o”R22 B’ 7. 

2KiAR2 (Ha- Hl) - 3 i ) 
Let us consider m = 0 (h-‘/s), then g = 0 (1). Th e remaining six integrals of (1.1) 
have a high index of variability [l]. Two have the index I/, and oscillate, and four 

have the index 1/2 and the character of integrals of the edge effect. 

In the case of the Navier boundary conditions the frequency equation in a first approx- 
imation decomposes into the product of two equations, of which the first results in the 

boundary value problem 

Y” + g (s, 0) Y = 0, Y (a11 = Y (s2)= 0 (6.4) 

and the second yields 

[+(z)“‘ds=kn (k=i,2,...j 

St 

(6.5) 

Let us find n (- or). There is no single formula here suitable for all m.We will use 

(3.7) for solutions with high index of variability, and (6.4) and (6.5) for a low index. 
Let us add the results 

n (0) = n, (0) + n, (0) + n3 (0) 

Let us use (3.7) for w = - w1 (r > r. > 0 ) 

(6.6) 

Sa 

yhB2Ra2 
D ( R,2 - Hz”) 

b23 = _ ?!k 
Rl+Ra (6.7) 

81 

As in Sects. 2 and 3, we find from (6.4) 

(6 8) 

where we find the limit m, from the condition g > 0, and the limit m2 from the con- 
dition that the range of integration in (6.8) include the domain r < r,, omitted in 

(6.7) 
6_ R3 na2rn 2 

ml _h.Lgl’ g= ( ) 
-, 

B 
ma 

4_ -_*+~* (6.9) 

For ro2 > mw2 the second member in the expression for m24 can be neglected. The 
number m falls in the domain m (( p-l for r,, < 1. For o = - o1 we find from 

(6.8) SP 
1 ’ 

n2 (0) = 3n 
St 

,~~~<11 )‘-‘ln[,(~)” + ((z)” - I)“*] ds (6.10) 

81 . 

Finally, we see that for r. < 1 Eq . (6.5) yields no contribution in the domain r < ro, 
i.e., n3 (0) = 0. If (m, / ml)” & 1, the expression (6.10) simplifies and added to 
(6.7) yields 92 

n(- 01) = & 
St 

2rhRiB” ‘/a 

u (HP - Hl) ) ( 

16 R~2~i. 

In BL 1 RI + R2 1 (h2ggs2f’” ) 
ds (6.11) 

5, 

Quantities on the order of ro2 as compared with one were discarded in obtaining (6.11). 



Hence, for CL’/’ < r0 < 1 the density is independent of rot which indicates the exist- 
ence of a domain of values r in which the integrals (1.2) and (6.2) are simultaneously 

suitable. In this case the coefficient of concentration of the density has the order of 

In [RI/h 1. 
Let us consider an example. Let 

R, = - R, i"i = 100 h, B = R (1.3 - COS6}, 181 ?g 7~ / 6, 0 = 0.3 

Then (6.11) yield rr / n, = 5.0. 
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